High-salinity-induced iron limitation in Bacillus subtilis.

نویسندگان

  • Tamara Hoffmann
  • Alexandra Schütz
  • Margot Brosius
  • Andrea Völker
  • Uwe Völker
  • Erhard Bremer
چکیده

Proteome analysis of Bacillus subtilis cells grown at low and high salinity revealed the induction of 16 protein spots and the repression of 2 protein spots, respectively. Most of these protein spots were identified by mass spectrometry. Four of the 16 high-salinity-induced proteins corresponded to DhbA, DhbB, DhbC, and DhbE, enzymes that are involved in the synthesis of 2,3-dihydroxybenzoate (DHB) and its modification and esterification to the iron siderophore bacillibactin. These proteins are encoded by the dhbACEBF operon, which is negatively controlled by the central iron regulatory protein Fur and is derepressed upon iron limitation. We found that iron limitation and high salinity derepressed dhb expression to a similar extent and that both led to the accumulation of comparable amounts of DHB in the culture supernatant. DHB production increased linearly with the degree of salinity of the growth medium but could still be reduced by an excess of iron. Such an excess of iron also partially reversed the growth defect exhibited by salt-stressed B. subtilis cultures. Taken together, these findings strongly suggest that B. subtilis cells grown at high salinity experience iron limitation. In support of this notion, we found that the expression of several genes and operons encoding putative iron uptake systems was increased upon salt stress. The unexpected finding that high-salinity stress has an iron limitation component might be of special ecophysiological importance for the growth of B. subtilis in natural settings, in which bioavailable iron is usually scarce.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis.

Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis Here we utilized FrvA, a high-affinity Fe2+ efflux transporter from Listeria monocytogenes, as an inducible genetic tool to deplete intracellular iron. We then ch...

متن کامل

A New Physiological Role for CcpA in Adaptation of Bacillus Subtilis to Sugar-Induced Osmotic Stress

The model Gram-positive bacterium Bacillus subtilis is liable to be exposed to high-salinity environments in its natural habitats and is often used in fermentation with high concentrations of glucose or other sugars. High salinity or high concentrations of sugars can cause osmotic stress to B. subtilis [1]. The saltinduced osmotic stress can activate signalling pathways to induce expression of ...

متن کامل

Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis

Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent p...

متن کامل

Global transcriptional analysis of Bacillus licheniformis reveals an overlap between heat shock and iron limitation stimulon.

In this study, we characterized the heat shock stimulon of the important industrial microorganism Bacillus licheniformis using DNA microarrays. While sharing a high degree of homology with the closely related model organism Bacillus subtilis, the heat shock stimulon of B. licheniformis exhibited several novel and unexpected features. Most notably, heat shock in B. licheniformis resulted in decr...

متن کامل

Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.

The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 3  شماره 

صفحات  -

تاریخ انتشار 2002